
CHAOTIC HOMOGENEOUS POROUS MEDIA.
3. BASIC PARAMETERS OF MACRODISPERSION
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The basic notions and parameters of a macrodispersion continuum — inner and outer scales, intensity, hy-
draulic resistance, and thermal resistance — are presented and analyzed. The notion of a macrodispersion
shell has been specified and the Darcy law has been refined.

In filtration of the heat-transfer agent in chaotic porous systems and materials, there exist and interact at least
four physical continua: a molecular-kinetic continuum, a continuum of continuous media, a turbulent continuum, and a
macrodispersion (dispersion-turbulence) continuum. The last-mentioned continuum is formed by the random Gaussian
velocity field of the liquid which is due to the nonuniformity of a porous medium. In [1, 2], the basic propositions of
the statistical-phenomenological theory of dispersion turbulence — structural regularities, principles of macrodispersion,
velocity fields, and local laws of transfer — are presented. A distinguishing characteristic of the macrodispersion con-
tinuum is its large scale.

Macrodispersion Scales. According to the principle of quasi-one-dimensionality, the coefficient of correlation
between the random porosity and the velocity is equal to unity: the structural inhomogeneity and the dispersion of the
velocity field are determined by a unique linear parameter dD [2] that, by definition, is the inner scale of macrodis-
persion. The dispersion diameter for nonuniform homogeneous porous media is determined experimentally from the
dispersion of the porosity D[Π(S)] of the cross section of the isotropic structure [1, 2]:

D [Π (S)] = Π
__
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) 
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S
 , (1)

dD,1 = √SD  , (2)

dD,2 = √4π SD  = 1.13 √SD  . (3)

The dispersion area SD is the reciprocal of the average density of the random points arranged uniformly in the plane
which determine the porosity. If the area S studied is a square or a circle S = dS

2 (S = πdS
2 ⁄ 4), (1) can be written, in

view of (2) and (3), as
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The use of (2) or (3) depends on the type of symmetry of the porous body and its components. For example, the local
coefficients of transfer [2] are more conveniently derived from formula (2). The quantities dD,1 and dD,2 differ insig-
nificantly, but to ensure against errors it is necessary to specify the method of calculation of dD. For certain porous
systems, the dispersion diameter can be determined theoretically.

Disordered system of identical particles (Fig. 1a): dp = const, Π
__

max = 1, and Π
__

min = 1 − π ⁄ (2 √ 3 ) = 0.093.
Using combinatorial analysis and the central limit theorem [3], for the porosity-distribution function we obtain the nor-
mal law with an average quantity Π

__
 and a dispersion
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Using (1) and (3), we have

dD = √ Π
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 dð . (6)

Figure 2 shows the dependence of dD
 ⁄ dp on the average porosity: in much of the range of variation of Π

__
, this ratio

is close to unity and the inner scale of macrodispersion coincides with the diameter of the particles dp.
Disordered system of identical pores (Fig. 1b): dpore = const, Π

__
max = π ⁄ (2 √3 ) = 0.907, and Π

__
min = 0. For

the dispersion of the porosity we obtain
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From (1) and (3) it follows that

dD = √ Π
__

max − Π
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(1 − Π
__
) Π
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max

 dpore . (8)

Fig. 1. Plane system of particles (a) and pores (b). dp and dpore, m.

Fig. 2. Dependence of the ratio between the dispersion diameter and the diame-
ter of the particles and the pores on the average porosity (all the quantities are
dimensionless): 1) dD

 ⁄ dp and 2) dD
 ⁄ dpore.

40



It is evident that the dependences dD
 ⁄ dp and dD

 ⁄ dpore are symmetric relative to the axis Π
__

 = 0.5. The inner scale of
dispersion turbulence corresponds to the dimension of an element of the porous structure dpore (Fig. 2). For a system
of particles at Π

__
 = Πmin and a system of pores at Π

__
 = Πmax, ordered structures are formed and dD = 0.

Analogous results are obtained for a system of identical pores or a system of particles of any shape. In this
case, if Π

__
min = 0, Π

__
max = 1 (for example, for squares), and ordered configurations are excluded throughout the range

of variation of the porosity 0 ≤ Π
__

 ≤ 1, the dispersion area coincides with the area of the pores or the particles SD =
Spore (SD = Sp).

Disordered system of random pores (particles). If a disordered plane system consists of independent pores or
particles of arbitrary shape and a random area, the following statement is true, which is easily proved with the use of
the basic structure theorem (Theorem 7 in [1]).

Theorem (of the dispersion area SD). For a nonuniform plane system of pores (particles) with limited perime-
ters and a random area satisfying the conditions of the central limit theorem, the dispersion area is equal to
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where sSporet is the average area of the pores. For a system of particles with an average area sSpt, we have
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) (Π
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Formulas (9) and (10) have a simple form for Π
__

min = 0 and Π
__

max = 1; then SD = sSporet for the system of pores
and SD = sSporet for the system of particles. In the simplest case, the conditions of the central limit theorem require
the boundedness of the first two moments of the distribution function of the area of the pores (particles) [3]. The theo-
rem of the dispersion area extends the possibilities of application of the basic structure theorem: if the areas of pores
(particles) satisfy the conditions of asymptotics to the normal law in an arbitrary cross section of a porous body, the
porous medium is nonuniformly homogeneous and the average area of the pores (particles) coincides with the disper-
sion area.

We illustrate the application of the theorem of the dispersion area with the example of a chaotic spherical
packing with a diameter of the particles dp. In any cross section of the packing, there arises a disordered system of
plane round particles with an average surface porosity equal to the volume porosity Π

__
. It is easy to show that sSpt =

πdp
2 ⁄ 6; therefore,
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Using (3), for the dispersion diameter we obtain
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In [1], this formula is derived on the assumption that the areas are distributed uniformly; the derivation presented here
is true for any distribution. It will suffice to know only the average value of the area.

The circumstance that SD coincides with sSporet (sSpt) of the cross section of nonuniform media (0 ≤ Π
__

 ≤ 1)
makes the quantity dD suitable for calculations. The dispersion diameter is a natural characteristic dimension not only
of macrodispersion but also of a porous cell. In this case, dD will be the determining parameter for both the outer
problem — the system of particles — and the inner problem — the system of pores.

In earlier works (see [1] and the literature cited therein), the dispersion diameter was called the fluctuation di-
ameter since it was determined with the use of the relative fluctuation of the porosity δ2[Π] = D[Π] ⁄ Π

__
2. The name
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change is explained by the fact that the theory of dispersion turbulence is not fluctuational. The latter considers the
behavior of a set of quasiclosed independent subsystems that do not interact with each other [4], whereas in the theory
of macrodispersion the interactions between subsystems (local laws of transfer) and the influence of the intensity of
these interactions on the average values of the heat-and-mass-transfer parameters of the entire porous system are inves-
tigated. The macrodispersion continuum of a moving liquid combines the physical continua existing in the cells of the
porous structure into a single whole.

Macrodispersion is caused by large-scale inhomogeneities of the velocity fields of the liquid. In the physical
model selected, the velocity fields are functionally linearly related to the porosity distribution (the correlation coeffi-
cient is equal to unity). The physical model described is limited only to the case of linear structural microdispersion
and explains the main experimental regularities of heat and mass transfer in porous media.

Another parameter of dispersion turbulence is the outer scale lM. The outer scale of macrodispersion lM is the
average value of the linear dimension of the minimum volume for which the principles of quasi-one-dimensionality,
independence, and isotropy are true. In brief, lM

3  is the volume element of the macrodispersion continuum. In other
continua, lM has the following analogs: the mean free path in the molecular-kinetic continuum and the Prandtl mixing
length in the turbulent continuum [5]. As for the latter correspondence, we note that, according to [2], in the case of
macrodispersion the flow itself (macrodispersion self-diffusion) and its enthalpy (macrodispersion heat conduction) and
kinetic energy (macrodispersion viscosity) disperse without dissipation. Dissipation occurs on a cell in small-scale con-
tinua [6]. But in each lM

3  the pressure difference does work on maintaining pulsation macroflows inside this region.
This work against the forces of the apparent internal friction is formally determined by the coefficients of macrodis-
persion viscosity introduced in [2]. With allowance for this remark, we will call lM the macromixing length.

In the definition of the outer scale of macrodispersion, the notion of the average value is used. Assuming that
macromixing is the simplest flow of events without aftereffect which possesses the properties of stationarity and ordi-
nariness [3], it is easy to derive the exponential law of distribution of the macromixing lengths:

W (l) = 
1
slt

 exp 

− 

1
slt




 . (11)

Here the average quantity slt is the outer scale of macrodispersion slt = lM.
We now evaluate the characteristic scales of macrodispersion. For Π

__
 ≤ 0.5, we select an area S such that

2 √D[Π(S)]  = Π
__

. Then the random values of Π will be within the interval 0 ≤ Π ≤ 1 with a probability of no less than
0.95, i.e., practically reliably. Using (4), we obtain

dS

dD

 ≥ 2 √ 1 − Π
__

Π
__  ,   0 < Π

__
 ≤ 0.5 , (12)

dS

dD

 ≥ 2 √ Π
__

1 − Π
__  ,   0.5 ≤ Π

__
 < 1 . (13)

Combining estimates (12) and (13), we find for dS = lM

lM

dD

 ≥ 2 √ 1 +  1 − 2Π
__


1 −  1 − 2Π
__


 ,   0 < Π
__

 < 1 . (14)

Relation (14) for both scales is the geometric condition of existence of the macrodispersion continuum.  For
0.2 ≤ Π

__
 ≤ 0.8 we have 2dD ≤ (lM)min ≤ 4dD. If the outer scale lM approaches the inner scale dD and condition (14) is

not fulfilled, the macrodispersion continuum breaks down.
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A stronger inequality is obtained according to the "rule of three sigmas," i.e., with a probability of no less
than 0.997 we have

lM

dD

 ≥ 3 √ 1 +  1 − 2Π
__


1 −  1 − 2Π
__


 ,   0 < Π
__

 < 1 . (15)

In this case, the condition of existence of the macrodispersion continuum becomes more severe. For example, for
0.2 ≤ Π

__
 ≤ 0.8 the inequality 3dD ≤ (lM)min ≤ 6dD will be true.

Relations (14) and (15) are the first condition of existence of the macrodispersion continuum; the second con-
dition is the inequality

lM << L . (16)

Combining (14)–(16), we obtain the relation for the three main scales:

dD << lM << L . (17)

Inequalities (14) and (15) also set limits on the components of the root-mean-square velocity of dispersion tur-
bulence [2]; for example, from (14) we have

vM,N ≤ 
1
2

 v ,   vM,M ≤ 
1
4

 v , (18)

where

vM,N = √ 1 − Π
__

Π
__  

vdD

lM
 ;   vM,M = 

1

2
 √ 1 − Π

__

Π
__  

vdD

lM
 . (19)

The relaxation processes are conveniently evaluated with the use of the equality τM = lM ⁄ vM,M.
Macrodispersion Intensity. The components of the root-mean-square velocity of macrodispersion, averaged

over the space of the liquid vM,g,x, vM,g,y, and vM,g,z are related to the components vM,M and vM,N in (19) by the rela-

tions vM,g,x = vM,g,y = vM,M
 ⁄ Π
__

 and vM,g,z = vM,N
 ⁄ Π
__

, using which we obtain

vM,g,x = vM,g,y = 
1

2Π
__ √ 1 − Π

__

Π
__  

dD

lM
 v , (20)

vM,g,z = 
1

Π
__ √ 1 − Π

__

Π
__  

dD

lM
 v . (21)

By analogy with [7, 8] we determine the macrodispersion intensity bM:

bM = 
1
2

 vM,g,x
2

 + vM,g,y
2

 + vM,g,z
2 

  . (22)

With account for (20) and (21) we have
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
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2
 . (23)

The quantity bM determines the kinetic energy of pulsation macrodispersion flow per unit mass of the liquid. The ki-
netic energy per unit volume of the liquid is equal to

EM = ρbM = 
3

4
 ρ 
(1 − Π

__
)

Π
__

3  




dD

lM





2

 v
2
 , (24)

and for the volume element of macrodispersion ∆V = lM
3  it has the form

EM,∆V = EMΠ
__

 lM
3

 = 
3

4
 ρ 
(1 − Π

__
)

Π
__

2  lMdD
2

v
2
 . (25)

Hydraulic Resistance. For dispersion turbulence, only the inertial coefficient of hydraulic resistance βM ex-
ists. It is determined from (24):

∆P

∆L
 = 
∆PM

lM
 = 

EM

lM
 = 

3

4
 ρ 
(1 − Π

__
)

Π
__

3  
dD

2

lM
3  v

2
 = ρβMv

2
 , (26)

therefore,

βM = 
3

4
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) dD

2

Π
__

3
 lM

3
 

  . (27)

The hydraulic resistance ξ = 2dD∆P ⁄ ∆Lρv2 for ∆P = ∆PM, ∆L = lM, and ξ = ξM is equal to

ξM = 
3

2
  
(1 − Π

__
)

Π
__

3  




dD

lM





3

 . (28)

From formulas (27) and (28) one can determine the macromixing length lM. Another method of measuring
this parameter follows from the solution of the heat-and-mass-transfer problem. Finally, using (14), it is easy to evalu-
ate the quantities ξM and βM:

ξM < 
3

16
 
(1 − Π

__
)

Π
__

3  ,   βM < 
3

32
 
(1 − Π

__
)

Π
__

3
 dD

 . (29)

It is evident that the hydraulic-resistance coefficients determined from (27) and (28) are averaged over the en-
semble of volume elements ∆V = lM

3 :

βM = sβMt ,   ξM = sξMt . (30)

In what follows, we use the notion of a cell of a porous system. A rigorous mathematical determination of
the cell and the features of averaging of the physical laws and parameters in it can be found in [6, 9]. In the present
work, we restrict ourselves to a diagrammatic representation. Let us consider a monodisperse system. Each disperse
particle, on the average, corresponds to a certain regular liquid volume (in the form of a cube or a sphere around this
particle). Motion inside this cell (distribution of velocities, densities, pressures, and other parameters) is set. The mo-
tion around the other disperse particles of a macroscopic volume element is assumed to be, on the average, the same
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as in the separated cell, i.e., a regular turbulence or an "almost periodicity" of the macroparameters in the space with
a period equal to the linear dimension of the cell is assumed. Starting from this model, one can find the dependences
for the average parameters entering into the averaged equations by averaging. This approach is analogous to the self-
consistent method for determining the effective characteristics of the total conductivity of a porous medium [2]. Dis-
persion turbulence that combines microprocesses into a single whole supplements the cell with a macrodispersion shell
(Fig. 3). For the hydraulic resistance of a porous body ξ we have

ξ = sξit + sξMt = sξit + ξM , (31)

where sξit is the hydraulic-resistance coefficient of the cell, averaged over the ensemble. The quantity sξit can be de-
termined theoretically by numerical methods with allowance for all the characteristics of viscous and inertial small-
scale flows only for monodisperse ordered systems of smooth spherical particles [6, 9]. The analytical method of
evaluation of sξit based on the assumption that the main part of the energy loss of the flow within the cell is due to
the work done on expanding the jet also leads to reliable results [10].

We now use the experimental data to evaluate the contribution of ξM to the total hydraulic resistance and,
what is more important, to its inertial component. In [11], the results of measurement of the inertial coefficient of hy-
draulic resistance in monodisperse spherical packings

β = 1.2 
1 − Π

__

Π
__

3
 dp

(32)

and the known formula of Sabri Ergun with the inertial component

β = 1.75 
1 − Π

__

Π
__

3
 dp

 , (33)

are presented. This formula has been obtained as a result of processing of the experimental data for granular layers
formed by spheres, cylinders, tablets, marble aggregate, and coke. In both experiments, in particular, a disordered pack-
ing of spheres with Π

__
 = 0.37–0.4 for which dD C 0.4dp was investigated [1]; therefore, using (29), we obtain

βM < 0.23 
1 − Π

__

Π
__

3
 dp

 . (34)

A comparison of (32)–(34) allows the following indisputable conclusion: the hydraulic resistance of macrodispersion is
significantly lower than the total hydraulic resistance of a porous medium ξ and a cell sξit. The inertial component
β for a spherical packing is determined mainly by the small-scale inertial effects in the cell, β D sβit.

Fig. 3. Scheme of heat and mass exchange in a porous medium: I) small-scale
cell; II) macrodispersion shell. v, m/sec; q,  W/m2; sαit, W/(m2⋅K);  λM,
W/(m⋅K); dD and λM, m; ξM and sξit, dimensionless.

45



The following fact is noteworthy. The functional dependence on the porosity in (32) and (33) is obtained
based on the dimensional analysis with the use of the diameter of the equivalent channel and with allowance for the
specific surface [11]. In the theory of macrodispersion, such methods and parameters are not used, but the dependence
on the porosity is analogous: formulas (27)–(29) and (34). Explanation of this phenomenon associated with the group
properties of transformations of porous structures and velocity fields is beyond the scope of the model described here.

Refinement of the Darcy Law. The linear dependence of the rate of filtration v on the pressure difference
∆P was experimentally determined in 1856 [12]. Evidently, there were earlier investigations of linear filtration, but
they were published for the first time in the work "Les fontaines publiques de la ville de Dijon" ("Public Wells in the
Town of Dijon") of Darcy. A modern description of his experiments can be found in [13]. The Darcy law (the fun-
damental law of nature for permeable structures) is as follows:

v = 
K
η

 
∆P

∆L
 . (35)

The permeability coefficient is the most important characteristic of porous media; it can be calculated according to the
Kozeny–Carman theory of hydraulic radius [14–16] or the Brinkman braking model [17].

The physical essence of the linear Darcy law is as follows: in the case of inertialess ("creeping" by the defi-
nition of G. Stokes) liquid flow, the resistance offered by any hydraulic system to the flow is in proportion to the ve-
locity of the flow. The generalized derivation of the linear law on the cells of a porous medium for the average values
of the pressure and the velocity is presented in [9]. A rigorous mathematical description of viscous and inertial small-
scale flows in the cells is presented in [6].

At the present time, a modified form of the Darcy law with an inertial component is commonly accepted:

∆P
∆L

 = 
η
K

 v + ρβv
2
 . (36)

The existence of the macrodispersion shell for nonuniform porous media introduces changes into Eq. (35) —
an additional term ρβMv2 appears in the Darcy law:

∆P

∆L
 = 
η

K
 v + 

3

4
 ρ 
(1 − Π

__
)

Π
__

3
 
dD

2

lM
3

 v
2
 . (37)

In its modified form,

∆P

∆L
 = 
η

K
 v + ρ sβitv

2
 + 

3

4
 ρ 
(1 − Π

__
)

Π
__

3  
dD

2

lM
3  v

2
 , (38)

β = sβit + βM . (39)

The refinement of the Darcy law is theoretical; an experimental check of (37)–(39) will require a high accuracy of
measurements of the hydraulic resistance of the macrodispersion shell.

Basic Properties of the Shell. The process of formation of a macrodispersion continuum has been considered
in [2]. In the present work, we have analyzed some of its parameters that make it possible to represent the continuum
more completely.

Determination. The macrodispersion continuum (shell) is the set M(dD, lM) of chaotically mixing liquid flows
with Gaussian velocity fields and linear dimensions l, dD << slt << L, slt = lM, which are formed as a result of the
dispersion of the filtered liquid on the porosity inhomogeneities dD. By the liquid we also mean gas.

To determine the basic properties of the macrodispersion shell, we evaluate the thermal resistance of the tran-
spiration system porous skeleton–liquid. We set the average heat-transfer coefficient in the cell sαit, its thermal resis-
tance 1/sαit, and the macrodispersion thermal-conductivity coefficient λM (longitudinal or transverse [2]). The linear
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dimension of the shell will be evaluated by one macrodispersion scale, for example, by dD; then its thermal resistance
will be DdD

 ⁄ λM. Let us assume that the additivity condition analogous to (31) and (37)–(39) must be fulfilled for the
thermal resistance:

1

sαt
 D 

1

sαit
 + 

dD

λM
 , (40)

where sαt is the average heat-transfer coefficient of the porous medium. This relation is fulfilled and confirmed by
experimental data [2]. A concrete form of (40) is obtained from the Fourier–Kirchhoff equation when the random
Gaussian field of macrodispersion velocities is introduced.

We now single out the basic properties of the macrodispersion shell:
1. The shell is "semipermeable": its hydraulic resistance is low, and the thermal resistance is higher than the

resistance of the cell within the range 0 ≤ Re ≤ 103. In this interval, the macrodispersion shell completely determines
the internal heat and mass exchange in the porous medium. The cell wastes a great deal (almost up to 100%) of the
filtration energy. There is no thermogasdynamic analogy in this regime: the heat exchange is determined by the shell
(the heat flux q is absorbed in it to a large extent), while the hydraulic resistance is determined by the cell.

2. The macrodispersion thermal conductivity is λM D Re and the heat-transfer coefficient in the cell is
sαit D Ren, 0.5 ≤ n ≤ 0.9 [10, 11]; therefore, at a certain value of Re D 102–104 the thermal resistance of the cell be-
comes higher than the macrodispersion resistance. The internal heat and mass exchange in a porous body begins to be
determined by the turbulent small-scale flows in the cell.

3. The minimum values of Numin in viscous flow, which are necessary, for example, for calculation of reac-
tors and the processes of chromatography, adsorption, and catalysis, are determined by the action of the macrodisper-
sion shell and can decrease to 10−3 [11].

The above regimes will be investigated in detail in the process of derivation of the basic equation of internal
heat and mass exchange in nonuniform homogeneous porous media.

NOTATION

dD, dispersion diameter; Π and Π
__

, random and average porosity; D[Π] and δ[Π], dispersion and relative fluc-
tuation of the porosity; SD and S, dispersion and selective areas; dS, linear dimension of the selective area; L, linear
dimension of a porous body; dp and dpore, diameters of the particles and the pores; Sp and Spore, areas of the particles
and the pores; l and lM, random and average macromixing lengths; v, filtration rate; ∆P, pressure difference; τM, char-
acteristic time of macrodispersion; vM,N, vM,M, vM,g,x, vm,g,y, and vM,g,z, components of the root-mean-square velocity of
microflows; bM, macrodispersion intensity; ρ, density of the liquid; ∆V, volume element of macrodispersion; EM and
EM,∆V, kinetic energy of macrodispersion in unit volume and in volume element; β, βi, and βM, inertial coefficients of
hydraulic resistance of a porous body, a cell, and a shell; ξ, ξi, ξM, coefficients of hydraulic resistance of a porous
body, a cell, and a shell; q, heat flux; η, coefficient of dynamic viscosity; K, permeability coefficient; M(dD, lM),
macrodispersion continuum; α and αi, heat-transfer coefficients of a porous body and a cell; λM, macrodispersion ther-
mal-conductivity coefficient; W, probability density; Re and Numin, Reynolds and Nusselt criteria; n, dimensionless de-
gree. Subscripts: x, y, z, coordinates; M and N, perpendicular and parallel; M, quantities determined by macrodispersion;
D, relates to the dispersion of the porosity; S, area; i, quantities determined inside the cell; g, averaging over the liquid
volume; min, minimum; max, maximum; p, particle; pore, pore.
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